

The Search for Single Top Quark Production in the μ + Jets Channel at DØ

Leonard Christofek

On behalf of the DØ Collaboration

s-channel $\sigma_{\rm NLO} = 0.88 \pm 0.07 \; \rm pb$

t-channel
$$\sigma_{\rm NLO} = 1.98 \pm 0.23 \; \rm pb$$

- Tevatron is proton-antiproton collider at center of mass energy of 1.96 TeV
- Top quarks are produced and decay through the electroweak interaction
 - Measure CKM matrix element V_{tb} , observe top quark polarization
 - Possible process to observe new physics
- Event signature: high P_T muon, missing transverse energy (MET), ≥ 2 jets

Backgrounds

W/Z + jets production

- e.g. Wjj, Wcc, Wbb, Zjj, Zcc, many others...
- Estimated from data.

• Multijet production (heavy flavor production)

- Jet fluctuates to mimic an isolated μ .
- Z → b b for muon channel (≈ 10-16%).
- Estimated from data.

Top pair production

- $t\bar{t}$ → dileptons, $t\bar{t}$ → μ + jets.
- Estimated from MC.

• Other $(\mathbf{Z} \to \mu \, \bar{\mu})$

– Estimated from MC ($\approx 11\%$ in soft lepton tagging analysis).

W+2 jet production

Event Selection

- Run II data set: 158 pb⁻¹
- One high momentum muon:
 - P_T > 15 GeV ($|\eta|^{\text{detector}}| < 2.0$)
- Missing transverse energy:
 - MET > 15 GeV
- At least two jets $(2 \le N_{iet} \le 4)$:
 - Jet $E_T > 15 \text{ GeV} (\mid \eta \text{ detector} \mid < 3.4)$
 - Leading jet $E_T > 25 \text{ GeV} (|\eta|^{\text{detector}}| < 2.5)$
- "Triangle Cuts":
 - Removes poorly reconstructed events (discussed in e+jets single top talk).
- At least one b-tagged jet:
 - Soft lepton tag (SLT)
 - Secondary vertex tag (SVX)
 - Jet Lifetime Impact Probability tag (JLIP)

Soft Lepton Tag

Secondary Vertex Tag

Jet Lifetime Impact Probability Tag

- The analyses are split into orthogonal channels:
 - studied independently,
 - combined later.
- Events are first scanned for a SLT, if a SLT is found then the event is not used in the SVT/JLIP analysis.

Data/MC Comparisons

Event yields after preselection.

DPF2004 - Riverside

Leonard Christofek

University of Kansas

JLIP

 $H_T = P_T^{\mu} + MET + \sum E_T(jet) > 150 \text{ GeV}$ (Only use two highest E_T jets in $\sum E_T(jet)$.)

 H_T distributions for the $e+\mu$ (JLIP + SLT) channel combination.

DPF2004 - Riverside

Leonard Christofek

University of Kansas

Muon Channel	SLT	SVT	JLIP
s+t combined	$0.32 \pm 0.01 \pm 0.03$	$0.76 \pm 0.01 \pm 0.14$	$0.79 \pm 0.01 \pm 0.13$

Where do we lose events?

- 1. Lepton identification efficiency $\approx 38\%$
- 2. b-tagging efficiency $\approx 50\%$
- 3. Remaining event selection efficiency $\approx 90\%$

Muon Channel	SLT	SVT	JLIP
Signal			
s+t combined	1.4 ± 0.3	3.5 ± 0.9	3.6 ± 0.8
Backgrounds			
$t\bar{t} \rightarrow l + \mathrm{jets}$	6.1 ± 1.5	14.7 ± 3.6	14.8 ± 3.8
$tar{t}{ ightarrow} ll$	2.0 ± 0.4	4.3 ± 1.1	4.4 ± 1.1
$Z \rightarrow \mu \mu + \text{jets}$	10.3 ± 3.5	_	_
W+jets + fake- l sum	22.4 ± 3.9	48.41 ± 8.8	60.0 ± 11.4
Sum of bkgds for s+t combined	40.8 ± 6.1	67.5 ± 10.0	79.2 ± 12.4
Observed events	43	75	70

Systematic Uncertainties

- Largest systematics on the MC signal: jet energy scale, trigger, tagger modeling $\approx 20\%$
- MC background: normalization $\approx 25\%$
- Data backgrounds (W/Z + jet): tagging probability estimate $\approx 20\%$

DPF2004 - Riverside

Leonard Christofek

University of Kansas

Cross Section Limits

Tagger	Expected	Observed
SLT	45 pb	49 pb
SVT	29 pb	36 pb
JLIP	32 pb	26 pb

- Cross section limits for s+t channel combined.
- Most sensitive tagger is the SVT.
- We use the Bayesian method to extract limits.

SVT dominates limit calculation due to its larger acceptance.

(
$$tb = s$$
-channel and $tqb = t$ -channel)

Conclusions

- Using between 156 pb⁻¹ and 169 pb⁻¹ of Run II data taken at DØ, we get the following observed upper limits on single top quark production at a 95% CL ($e+\mu$, SVT+SLT):
 - 19 pb s-channel, 25 pb t-channel
 - 23 pb s+t combined
- Run I results (95% CL limits, $\approx 110 \text{ pb}^{-1}$, $\sqrt{s} = 1.8 \text{ TeV}$):
 - DØ: < 17 pb s-channel, < 22 pb t-channel
 - CDF: < 18 pb s-channel, < 13 pb t-channel, < 14 pb t+s combined
- Future plans
 - Short term (improve b-tagging efficiency, W+jets background estimate and acceptance, use likelihood fitting).
 - Long term (use Neural Networks to improve signal and background separation).

Backup Slides

- We use Bayes theorem to calculate the cross section with a flat prior ("maximum entropy").
- Systematic uncertainties and error correlations are included using a multivariate Gaussian.
- We extract an upper limit on the cross section by integrating the posterior probability up to 0.95:
 - $-\int_0^{\sigma(\text{UL})} \text{Posterior} (\sigma \mid N_{\text{observed}}) = 0.95$
- Computation of the upper limit on the cross section is also done with a Modified Frequentist Method and produces similar results.

Posterior Distributions

SVT dominates limit calculation due to its larger acceptance. (tb = s-channel and tqb = t-channel)